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We present a constructive procedure to deal with large quantum systems in the 
thermodynamic limit. Starting with a discrete spectrum, we perform a complete 
decomposition of the evolution into one-dimensional subdynamics. We then go 
to the limit of a continuous spectrum after collecting them into global sub- 
dynamics of given degrees of correlation. Previously obtained results for the 
vacuum subdynamics are justified. The procedure is applied to the problem of 
potential scattering. 
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1. I N T R O D U C T I O N  

The ques t ion  of how to reconcile  the dynamica l  evolu t ion  of  large 
in terac t ing  systems with the second law of  t he rmodynamics  has been of  
long s tanding  interest  to I. Pr igogine  and  the Brussels group.  (1) The 
concept  of  subdynamics  they have defined has  p roved  quite convenient  for 
expressing the i rreversible  charac te r  of the evolut ion.  (2) I t  has fu r thermore  
a p p e a r e d  as a m a j o r  s tep in deve lop ing  the s t a r -un i t a ry  t r ans fo rmat ion  
theory,  leading  to the so-cal led physical  representa t ion .  (3) Whi le  the 
in t roduc t ion  of these no t ions  or ig inal ly  made  use of  pe r tu rba t ion  techni-  
ques and  series expansions ,  more  formal  presen ta t ions  of  the theory  were 
a t t empted ,  in pa r t i cu la r  by  Grecos  et al. (4) 

It is a privilege for the authors to dedicate this paper to Prof. I. Prigogine. They are both 
genuine offspring of the Brussels school. As such, most of the ideas they profess owe their 
inspiration to I.P., their mentor, colleague, and friend through fascinating teaching, 
stimulating discussions, and illuminating speculations, but they take full responsability for 
their obvious mistakes, pernicious misconceptions, and malignant deviations from the 
orthodoxy they have modestly helped to create. 

1 Universit6 Libre de Bruxelles, CP 231, 1050 Bruxelles, Belgium. 
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We intend to suggest in the present paper why these attempts did not 
quite achieve their purpose, which was to stir up further developments in 
the theory. Their authors did not properly appreciate the ie-rule, (5) a well- 
defined procedure of analytic continuation for the resolvent formalism, 
introduced in the perturbative approach, and they failed to recognize its 
relevance in dealing, in the limit, with a continuous spectrum. 

We shall give concrete content to the above-mentioned formal results 
for the case of a quantum system in the thermodynamic limit. Starting from 
a finite system, we shall precisely define the way in which to take the limit 
of a continuous spectrum. The constructive method we present is easily 
extendable to situations that, for sake of simplicity, we de not consider 
here, such as the presence of discrete correlations amid the continuum, 
degenerate levels, and so on. Due to considerations of space, we shall limit 
ourselves to the presentation of essentially new results obtained using this 
method, leaving the lengthy demonstrations for further publication. 

The most striking result that we present here is the complete 
diagonalization of the evolution operator, together with the corresponding 
highly singular (of distribution-type) star-unitary transformation. Such a 
result might be of importance for the construction in such systems of the 
operator conjugate to the Liouvillian (the infinitesimal generator of the 
dynamical evolution), namely the internal time T, which is at the basis of 
recent developments of the theory. (6) 

The consistency of the transition to the continuous spectrum requires 
that all the subdynamics with the same degree of correlation are collected 
into a single global subdynamics with this degree of correlation. In the par- 
ticular case studied here of the global vacuum subdynamics, all well-known 
results concerning the vacuum subdynamics associated with the singularity 
at the origin in the resolvent formalism are recovered. We illustrate these 
considerations on the example of potential scattering. (7) 

We emphasize that the classical limit of our results can only be 
considered after this globalization has been performed, as no Liouvillian 
operator with a discrete spectrum can be taken as a starting point for a 
classical treatment. 

2. THE D Y N A M I C S  OF CORRELATIONS 

The notion of subdynamics was introduced in the study of the solution 
of the Liouville-von Neumann equation 

i-~ p= Lp (2.1) 
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describing the time evolution of the density operator p in terms of the 
Liouvillian L, which for quantum systems is the commutator  with the 
Hamiltonian H (h = 1). 

The formal solution of (2.1) is conveniently expressed in terms of the 
resolvent of L: 

p(t) = 2i~r ~ du e-~U' i t_t_~ u-~---L p(O) (2.2) 

The subdynamics are related to the singularities of the resolvent 
(U--L) -1 in a sense to be made more precise later in this paper. 

In the general case, the analysis of these singularities relies on a 
perturbation scheme in which the resolvent is expressed in terms of an 
unperturbed Liouvillian L0 and a perturbation 6L corresponding to the 
decomposition of the Hamiltonian into an unperturbed part H0 and an 
interaction V: 

1 i 1 5  - ~ 6c (2.3) 
u - L  u--Lon o u - L  

Such an expansion leads naturally to a description of the evolution as 
a dynamics of correlations. 

The starting point for treating a large quantum system consists in 
considering it enclosed in a finite quantization box, for which at some 
suitable stage the infinite-volume limit will be taken. 

As long as the system is finite, a basis can be constructed that is 
labeled by a countable set of discrete indices Ik), to which also refer the 
eigenvalues of the unperturbed Hamiltonian He. In superspace, the 
correlation states are denoted by a pair of such indices Iv) =-Ik, k ' ) ,  which 
label the eigenvalues v of the unperturbed Liouvillian Lo, and because-of 
the discreteness one can distinguish between different correlation states. 
The correlation states can be classified into families according to their 
degree of correlation. The various vacuum states Ik, k )  are eigenstates of 
Lo with vanishing eigenvalue, and the n-correlated states need at least n 
transitions 6L to be reached starting from any vacuum. Then a theorem in 
dynamics of correlations (dc-theorem) can be proved(S): 

T h e o r e m .  Between two successive identical correlations, only states 
of higher degree of correlation may give a finite contribution when the 
continuous limit is taken. 2 

2 In situations with degenerate levels or when discrete correlations are embedded in the con- 
tinuum, a ctassitication of correlations should be adopted such that the above dc-theorem 
remains valid. 
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This theorem permits the unambiguous application of an analytic con- 
tinuation rule that enables one to obtain separately the various con- 
tributions to the time evolution of the matrix elements of the density 
operator. Let us briefly recall the formulation of this i~-rule: 

ie-Rulo. When evaluating the contributions coming from the 
singularity corresponding to a given correlation state, the propagator 
associated with a correlation of a higher degree must be treated as +ie 
(+  ie has to be added to this propagator), while the propagator associated 
with a less correlated state is treated as - ia .  In the case of a correlation of 
equal degree, its propagator is treated as +i~ or - i e  when it appears, 
respectively, at the left or at the right (the dc-theorem prevents it from 
appearing on both sides) of the correlation considered. 

3. T H E  S U B D Y N A M I C S  

The subdynamics I /ar ises  from the singularity corresponding to the 
particular correlation v, that is, from the pole u =  v in the perturbation 
expansion. To isolate this singularity, one expresses the resolvent (2.3) in 
terms of functions that are regular at u=v. One introduces (barred) 
functions, which are irreducible with respect to the correlation v, i.e., do 
not contain the particular propagator v: 

~v(u)= (vl,SL (~L ]V)irrv (3.1) 
n = l  

c~.v(U)= (v'[ ~ ~ 6 L  IV)irr v (3.2) 
t z = l  

~v,v,(u) = (v] fiL J•')irr v (3.3) 
n = l  

)~ , , (u )  = (v'[ u--SToo,Eo (3Lu--~o ] V t ' ) i r r  v (3.4) 

In terms of these functions, the components of the solution (2.2) at 
time t can be written as 

�9 v - p = 1  
�9 ' n = O  

x E&..,., + ~v.v.,(z)-I p.,,.(o) + .~I,~,,,(,,,) p~,.,(o) 1 (3.5) 
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or by performing the summation over n as 

1 v~ f ~ d u e - i " t {  [6 ' '~+~v' 'v(u)]  1 
p . . . .  ~ , ~ _ ~ + 0 , , ( ~ )  

x [6v,.,, + ~v,,,,,(z)] pv,,(0) + ~G(u) pv,,(0)} (3.6) 

In contrast with the usual presentation, in which ~ is an operator with 
diagonal and off-diagonal elements, the fact that here we consider 
separately each particular discrete correlation v leads to a ~ that is a 
function, not an operator. As a consequence, the subdynamics we are about  
to construct will all be one-dimensional. 

The contribution to pc ( t )  arising from the singularity associated with 
the particular correlation v is now given by 

1 (~ _~., 1 
P~' = _57#~ J.,, & e  [ & >  + %,v(U)]  " -  ~ -  ~ ( ~ i  

x ~ [6 , , , , , ,  + # v , , , , , ( u ) ]  p v , , ( O )  (3.7) 
v" 

where u~ is the solution of 

u , , -  v - ~ ( u ~ , )  = 0 ( 3 . 8 )  

with the condition that it reduces to u~ = v for a vanishing interaction. 
At this stage, it is convenient to introduce two auxiliary parameters tc 

and z. The parameter  tc will play a role similar to that of the coupling con- 
stant and will be set equal to 1 at the end of the calculation. 3 The 
parameter  z will be the ie that has to be added to or subtracted from u in 
the propagators  in order to take the/e-rule into account. Equation (3.7) is 
thus transformed into 

v 1 due  ,,t [6v,~ + c~, ~(u, z)]  ~ , , ( u  + z) 
P~' = 2i----~ ~(~,~)  ' " u - v - 

x ~ [6v, v, + Y~,v,,(u, z)] p~,,(0) (3.9) 
~,, 

Observe that in ~ the parameter  z has been uniformly added to u, as all 
the correlation states in ~ are of a degree higher than v, while in c~ and 
it has to be added to or subtracted from u contained in the propagators  
according to the/e-rule. 

3 For simplicity, we shall only introduce it here in connection with the diagonal element ~. 
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Now the two-parameter function u~(z, ~c) is the solution of 

u~(z, K) - v - ~(J~(Uv(Z, ~)  + z )  = 0 (3.1o) 

which we write explicitly 

uv(z, ~:) = v + ~cOv(z + v, ~:) 

and is such that 

O~(y, ~ = o)  = (J~(y)  

( 3 . 1 1 )  

(3.12) 

Introducing (3. l l )  into (3.10), one obtains the relation 

O~(y, ~:)= tp~(y + ~:Ov(y, ~)) (3.13) 

Let us make more precise the somewhat hybrid way in which we per- 
form the transition from the discrete to the continuous spectrum. 

The states are considered discrete as long as it is convenient for their 
enumeration, but the continuous limit is prepared by not considering con- 
tributions that will become negligible on the basis of the dc-theorem, and 
by adapting, through the use of •  the propagators associated with the 
various correlations, It is clear that, once the analytical continuation has 
been indicated, for the subdynamics corresponding to a given correlation, 
one can replace internal summations (over dummy indices) by integrations 
for all other correlations. 

Let us first consider in (3.7) the element v '=  v "=  v and write 

1 C 1 
du exp( - iut ) 

2ire ,.iz,~) u -  v -  K~(u + z) 

= ( e x p { - i [ v + ~ c O v ( z + v ,  t c ) ] t } )Av(z+v ,~c)  (3.14) 

where Av(z + v, ~c) is the residue of the function [u - v - ~cq~(u -f z)]  -1 at 
u= Uv(Z, ~c). It suffices to expand the denominator around u =  uv(z, ~c) in 
(3.14) to obtain its expression in terms of the derivative ~'v of ~v: 

1 
X~(z + v, ~c) = (3.15) 

1 - ~c~ ' (z  + v + ~:O~(z + v, ~c)) 

An alternative form for Av(z + v, ~:) is obtained from an asymptotic 
expansion of the lhs of (3.14) (by deforming the contour around u~ in such 
a way as to include the origin u = 0 and excluding all other singularities of 
the integrand) 
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1 ~u dlA<-iu' ~' E'lJ-t-K~lv(l't-Jf-z)ln 
2ig ,.(z,~) n = o  l,,!n+ 1 

= e }.=o (3.16) 
n ~ 0  " 

For t = 0, one finds the required expression for Av(z + v, ~c): 

oo 1 
~7,,(z + v, ~c) = ~ ~ D;:[v + ~0,,(u + z~l,, / J u = O  

n 0 

= , 2 o  -~. D ~ [ v  + K~9,.(u + z)]~= o 

_ ~ 1 " +KO, , (z ) ]  (3.17) 
o n ! D _ [  v - ,, 

n 

For t r 0, the identification of (3.16) with (3.14) enables one to obtain 
an equation for O,.(z + v, ~c): 

v + ,~O,.(z + v, ~c) 

" v  tc~,.(u + + ~-0,,(z ~c)]" (3.18) 
1 

, ,=on!  D, , [  + z)],=o [v + v, 

That this relation holds can be easily seen. Indeed, the rhs is an expression 
for the function v + ~cd}v(u + z) displaced from u = 0 to u = v + ~cO,.(z + v, K), 

v + t c 6 , . ( u + v + ~ c O , , ( z + v ,  ~c) + z)l ,=0 

= v + ~cr + v + ,cO,.(z + v, ~c)) 

which by virtue of (3.13) is equal to the lhs of (3.18). Note that (3.18) can 
also be written as 

v + KO,.(z + v, ~c) 

= ~ 1 {D;[v+~,(:)]}[v+~0,(z+~, , ,c)]" (3.19) 

In this more familiar form, however, it is not easily seen that the rhs 
corresponds to a mere displacement, as the last factor still depends on z. 

The fact that the subdynamics is one-dimensional, ~ being a function, 
permits one to understand the results obtained above in terms of 
Lagrange's theorem, ~9~ as in Ref. 4. This makes the mathematical 
formulation considerably safer than when ~ is an operator. In Section 5, 
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we intend, however, to justify the usual results obtained from an operator 
formalism. 

The terms in (3.9) containing cg and .@ are treated along the same 
lines. For  instance, one has 

1 s due -i"' 1 
Z )  

2i~ O,,.(:,~) u - v - tcq},,(u + z) 

= [exp(-iu~t)] A,.(z + v, ~c)~.~,,(u~, z) 

=(exp{-i[v+~cOv(z+v, ~c)] t})A~(z+v, ~c)/3~,u,,(z, ~c) (3.20) 

with 

D~..v,(Z,K)=~.v.(U,,Z)=N~,,.(V+KO,(Z+V,~C),Z ) (3.21) 

In the expression of the element/3.  ,,,, it is the first index that refers to the 
subdynamics under consideration. 

In the asymptotic expansion 

.~,.(z + v, ~) D ....... (z, ~c) 

= ~" 1D~.{[v+~c~(u+z)]"~,v,{u,z)} .=o (3.22) 
n = O  t i .  

one cannot in general replace the derivation with respect to u by a 
derivation with respect to z, since in ~(u,  z) the propagators contain either 
u + z or u -  z according to the ig-rule. 

Similar expressions are derived for the terms containing g,  with the 
second index referring to the subdynamics considered: 

and 

0,,, ~,(z, ~) = ~ ,  ~(v + xO.(z + v, ~c), z) 

C,,.,(z, ; )  3~(z + v, ~c) 

= �9 n 0 

(3.23) 

(3.24) 

The solution (3.8) is thus given by 

. . . .  [6v, v + Cv, v(z, ~:)] exp{-i[v+~cOv(z+v, K)] t} 

• ~v(z + v, ~) ~ E6v,v,, + 0,. v.(z, ,~)] pv..(o) (3.25) 
v" 
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v 

The operators H, defined by their elements 

v 

g,,, ..... [5,., ,. + C,., v(Z, ~c)] -4v(z + v, K)[&,, ~,, + D,,~,,(z, K)] (3.26) 

form a complete set of subdynamics. The demonstrations that they obey 
the usual orthonormality, completeness, and dynamical independence 
conditions are exactly the same as in Ref. 10 and will not be repeated here. 

v v v 

In the H-subdynamics, the privileged component p,. ~ (Hp),. evolves 
according to the one-dimensional equation 

�9 v i ,  

~ 0,p,. = [v+~O, . ( z+v ,  K)] p, (3.27) 

while the other components are expressed as functionals of these privileged 
components: 

v -o \, 
p, (t)= c, ,p,(0 (3.28) 

In the next section we shall study in detail a particular vacuum sub- 
dynamics, before recombining all of them into the so-called H-subdynamics 
familiar from previous work. Now that the role of the auxiliary parameter 
~c used for selecting the appropriate solution of (3.8) has been established, 
we may set its value equal to 1 in the following. 

O 

4. A V A C U U M  S U B D Y N A M I C S  n 

By introducing an irreducibility condition with respect to all the dif- 
ferent vacua, we shall express for the particular case of a vacuum state 10) 
the various functions appearing in the previous section in terms of the 
operators that were introduced in the general formalism as previously 
developed. 

The diagonal elements of the collision operator defined as 

4,o,o(.)- = (ol ~L ~ (u_~lCo 
i i =  I 

can immediately be identified with ~o(U), 

~,o.o = ~o(.) 

17 

~ L  ] 0 ) i r r  i /  ( 4 . 1 )  

(4.2) 

since, due to the dc-theorem, in ~o all intermediate states have to be of a 
higher degree of correlation, thus excluding other vacuum states. 
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The off-diagonal elements of the collision operator tp, 

4,o,o,(U) - ( o l  ~L ~L I O ' ) ~ .  (4.3) 

can serve for expressing the functions ~ and c~. 
The destruction element Jo,~(u) is irreducible only with respect to the 

vacuum 10) and contains other vacua. In particular, the element ~o,o,(U) 
admits the expansion 

~o,o,(U) = Oo,o,(U) 
u -  ~'o,o,(U) 

1 1 
+ ~ Oo, o,,(u) . -  Oo,,,o-(U) 0o',,o'(") . -  4'o',o'(',') 

0" 

+ ... (4.4) 

Defining 

1 
~~176 = ~b~176 u - ~o, o,(U) (4.5) 

one may write an integral equation for ~o,o,(U): 

~o,o,(U) = ~o,o,(u) + ~ ,@o,o,,(u) ~o,,o,(U) (4.6) 
0" 

Similarly, for the creation elements, one obtains 

~o, o(U) = ~o,,o(U) + ~ Cgo,,o,, (u) C~o,, o(U) (4.7) 
0 "  

where %,o(U) is defined as 

1 
%, o(U) = Oo,o(u) (4.8) 

U-Oo, o,(U) 

The ~o,c and ~,,o, where the index c refers to any correlated state 
different from a vacuum, can be expressed in a similar way: 

~o,,.(u) = ~o,c(u) + ~ ~o,o,,(u) ~@o",c(u) (4.9) 
0" 

~,. o(u) = ~c,o(u) + ~ cg,.,o', (u) ~o,, o(u) (4.10t 
0" 
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in which ~o,~. and (g,.,0 are elements of the usual destruction and creation 
operators irreducible with respect to all vacuum states. In terms of these 
elements, the solution for the various vacuum components of/](t) is given 
by 

~o,(t) = (C5o,,o + Co,,o)[exp(-iOot)] Ao ~,, (C~o,o" + /5o,o")(Po" + ~)o",,,P,,) 
O',c 

(4.11) 

and for the correlated components by 

0 0 

,~,(t) =Z Cc,o,po,(O 
O' 

/50.0,, = G .o . , (u ,  z)l.=Oo(;~ = G~o, , (0o(Z),  z )  

G . o  = G, ,o(U + z ) l .  = Oo(~ = ~7o',o(Z + 0o(Z))  
0 

Do,,.. = 2 o , , . ( u  + z ) r .  = o0(~ = G , ,  c(z + Oo(Z)) 
0 

G . o ,  = ~ , o , ( "  + z ) l . :  Oo(:/= ~,.o,(Z + do(Z)) 

where 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

Expressions (4.14)-(4.16) are functions of u + z, as all the propagators 
correspond either to correlation or to vacuum states at the left of the 
vacuum 0. This is not the case for /5o,o,, in (4.13), in which vacuum states 
appear at the right of 0 and one must treat them u - z .  

More explicitly, in the expression (4.7), using the definition (4.8), one 
replaces u by u + z everywhere, including the propagators present due to 
(4.8): 

1 
~o,o(U+ z ) -  u+ z-4'o,o,(U+ Z) 

x [~o, o(U + z) + ~ ~o,o,,(u+z)~o,,o(U+Z)] (4.17) 
0" 

By contrast, with the use of (4.5), one replaces u by u+z in (4.6) 
everywhere except in the vacuum propagators, in which u is replaced by 
U - - Z :  

~o,o,(U, z)= E r + z) + ~ ~o,o,,(u, z) ~o,,o,(U + z)] 
O" 

1 
X 

u - z - 6o ' ,o ' (U + z )  
(4.18) 
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Multiplying both sides by the denominator and taking the value at 
u = Oo(Z), one obtains the following equat ions  

[z + do(Z) - 0o, o,(z + 0o(Z))] Co, o 

=Oo'.o(z+do(z))+~o',o"(z+do(z)) Co".o (4.19) 
0" 

Do,o'  [ -  z + do (Z )  - 00, o,(z + do(Z))] 

=Oo.o,(z+Oo(z))+~Do,o,,Oo,,o,(Z+Oo(Z)) (4.20) 
0" 

It is quite clear from these expressions that the transformation of C 
into /? through a *-conjugation cannot be accomplished without explicit 
reference to the /e-rule. 

0 

5. THE V A C U U M  S U B D Y N A M I C S  n=Eo n 

In going to the continuous spectrum limit, one gives up the idea of 
discriminating between the different vacuum states. Let us thus proceed to 
the summation over the corresponding vacuum subdynamics. For this 
summation to be performed, and once it has been, the vacuum indices can 
be treated as continuous integration variables. 

By summation over 0 one obtains 

/3o,(t) = ~ (6o, o + Co,,o) [exp( -iOo t)] Ao 
0 

x ~ (6o.o-+Do.o")(Po"+Do".~.P~.) (5.l) 
O",c 

Let us first consider the initial time contribution: 

0 

#o,(0)= ~ (l+C)o, oAo(l+O)o,o,,(po,,+Do,,,p,) (5.2) 
0,0",c 

In terms of the operators irreducible with respect to all vacuum states, the 
same expression was given as 

/)o,(0) = ~ Ao,,o,,(Po,, + Do,,,,./),.) (5.3) 
O",c 

so that one obtains by direct identification 

Ao, o,, =Y,  (1 + C)0,,o ,~o(1 + b)o,o,, (5.4) 
0 
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One also has the relation 

0 

Ao, o-Do,,.,. = Y', ( I  + C)o,o Ao ( l  + L))o,o,,Do,, c (5.5) 
0" 0.0" 

from which one cannot easily obtain a closed form for D, as the last factor 
of the rhs still depends on the summation index 0. 

For  the correlated components, ~ ,  one has on the one hand 

0 0 

~.= ~ C,,o,(l+C)o, oAo(l+b)o,o,,(po,,+Do,,,.,pc,) (5.6) 
O.O',O",c" 

and on the other 

/5c = ~ C~. or (5.7) 
0 

which enables one to define C through the identity 

0 

(CA),,o,, = ~ C,,o,(1 + C)o,,o/7o(1 + D)o,o,, (5.8) 
0,0' 

Before showing that this is indeed the usual expression for C, ~2) let us 
go back to the contribution to #o' at time t, which is usually cast into the 
form 

(5.9) 

By comparison with (5.l) and using (5.4), one sees that 0o,~ is given 
by 

0o,~ = ~ (1 + C)o,,o 0o(1 + C)6o ~ (5.10) 
0 

where we have formally introduced the inverse of the operator (1 + (7). 
Now by (4.16), one can write 

0 

Co0, = %,o,(U + z + 0o(z) ) l .=o  

1 F D , , ~ .  ~ . 

n 

~ 1 D n (5.11) 
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The expression (5.8) becomes 

(CA)~,o,, = ~ C~.~A~,o,, 
o 

n O' 0 

Using (5.4), Ao,o,, is made to appear at the right in the rhs of the above 
expression. Then using (5.10), one recovers the usual definition of C: 

C,.~= ~ ~ l [D'~Uc,o,(Z)](On)o,~ (5.12) 

We shall not give here the corresponding expression for D, which 
would require the introduction of the mirror-image operator of 0 (see 
Ref. 2). 

Including the diagonal elements in (4.7), 

( 1 - ~ ) ( 1  + U ) =  1 (5.13) 
one obtains the equation 

[ z+6(z ) -q , ( z+O(z ) ) ] ( l+C)=z+O(z ) -~ ( z+O(z ) )  (5.14) 

which generalizes Eq. (4.19). Observe that, in the explicit expressions for 
the different elements, the index of O is everywhere the same as the right 
index of (1 + C), the notation ~ now summarizing both diagonal and off- 
diagonal elements. Due to (3.13), the rhs of (5.14) reduces to z. By mul- 
tiplying both sides at the right by (1 + C) -~, with its left index the same as 
that of 0, and using (5.10), one recasts (5.14) into the form 

O-~(z+O(z))(l+C)(l+C)-'=z[(l+C)-~-t] (5.15) 

Following the same procedure used to obtain (5.12) from (5.8), the second 
term of the lhs leads to the usual expansion of 0 in terms of the derivatives 
of the 0 operator. However, the identification 

1 O(z) : ~  ~ [ D ~ ( z ) ]  On(z) (5.16) 
n 

is not possible analytically for all z, but only strictly in the limit z = i0 
where the rhs of (5.15) vanishes. 

The same remark holds for the usual expansion 

A(z)=~, l [D'~On(z)] (5.17) 

for which a general proof will not be given even in the limit z = i0. 
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In the next section, however, we shall indicate how this equality is 
verified at the lowest orders in an expansion in the inverse of the volume 
(L-3). 

6. POTENTIAL SCATTERING 

This problem has been treated extensively in Ref. 7 and we shall apply 
the above considerations to the particular one-particle sector that was 
labeled 1-1 in that article. 

Many simplifications will occur when the orders of magnitude of the 
various elements with respect to the volume are taken into account 
explicitly. In particular, one has 

~;o(u) = ~,ooo(U) = O(1 /L  3) (6.1) 

From the definition (3.13) for 0o, 

Oo(z) -= ~o(Z + Oo(Z)) (6.2) 

one sees that as all the propagators inside ~o correspond to more 
correlated states and are thus of the form l / ( z  + Oo - v), Oo can be neglected 
in front of v. Therefore 00 can be identified with ~o and also through (4.2) 
with the diagonal element of 0: 

Oo(z) : ~ o ( Z ) :  ~o~o(Z) : (0J(Z))o,o (6.3) 

Similarly, one gets from (4.15)-(4.16) 

0 

Do",,. = ~o',,.(z + 0o) ~ ~o,,c(z) = Do,,~ (6.4) 

0 

C,..o, = ~f,. o,(Z + 0o) : c{,.,o,(Z) = C,.o, (6.5) 

In the creation and destruction of correlations, the explicit reference to the 
0 

subdynamics H disappears when orders of magnitude in the volume are 
taken into account; the expressions for these operators are hence con- 
siderably simplified, as they are reduced to a single term instead of a series. 

By contrast, in spite of the fact that 

q)o',o,, = (~tnd(U))0',0" = 0 ( 1 / L 6 )  (6.6) 

the creation and destruction elements from one vacuum to another still 
obey integral equations. Indeed, from (4.17), 

Oo, o=~o,o(U+~+Oo(Z))].=o 
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satisfies, using (6.3), 

1 [~o, o(Z) + ~ t)o, o,,(z)Co,, o] (6.7) 
Co, o : z + r - r o., 

and is of order  L - 3  due to the volume dependence of the numera to r  and 
denomina to r  (the limit z ~ i0 is unders tood in all that  follows). 

Mult iplying bo th  sides by the denomina to r  and adding r to both  
sides for diagonal  elements, one gets 

((1 + C) tpj(Z))o,o = (r  + C))o, o + ( r  + C))o, 0 (6.8) 

which also reads 

(1 + C)  O(z) = t)(z)(1 + C) (6.9) 

where the index of 0 is the same as the right index of C and O(z) sum- 
marizes the Ou and qs,,~ elements. 

Mult iplying at the right by (1 + C )  -~, one then finds that  the 
asymptot ic  collision opera to r  0 reduces to the collision opera to r  itself as 

O(z): (1 + C) 0(z)(1 + C ) - i  = ~(z) (6.101 

To complete  the compar ison,  we need the expression for A. F r o m  
(3.15), one has 

Ao= l _ r  1 + o  (6. l l )  

F r o m  (5.5) and (6.11), one can write at the dominan t  order  in the 
volume 

A : (1 + C)(1 + LS) (6.12) 

The diagonal  elements are thus given by 

(A j)o,o = 1 (6.13) 

and for the off-diagonal elements one has 

(A,,j)o,o, = Co, o, + Do,o, + ~ Co,o"/-)o",o ' (6.14) 
o" 

Using the Po incar6-Ber t rand  identity, 

_~io z + a z + b  z + a + b  a 

one finds tha t  all terms in (6.14) vanish 4 at order  L -3. 
4 When these calculations are consistently performed up to the next order in the volume, it is 

found, using repeatedly (6.15), that (A.~l)o,o, = (O'.e)o,o' = O(L-6) , This result agrees at that 
order with the usual general expansion (5.17). 
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Thus, at the dominant order in the volume, one has for the case of 
potential scattering, 

A = 1 (6.16) 

and an explicit expression for the inverse of (1 + C) is obtained, 

(1 + ( ~ ) - '  =(1  + D )  (6.17) 

As a consequence, the evolution equation in the H-subdynamics reads 

i a,#o = Oo,o(~) ,~o + 2  r #o, (6.~g) 
O' 

Let us briefly recall that, in the present case, due to the fact that A = l, 
it is possible to identify r o with the diagonal component PPo in the physical 
representation, which is obtained, in the general theory, ~3/through the star- 
unitary transformation. Also, r is equal to 0, 

r = r = 2i Im t[~(~ok) (6.19) 

is related to the forward scattering, and 

r = r = 2~i d(r - ok')I t/,,(co,)l 2 (6.20) 

to the cross-sections for the k --, k' process. The optical theorem ensures the 
conservation of the norm. 

7. C O N C L U D I N G  R E M A R K S  

In this paper, we have succeeded in obtaining a complete decom- 
position of the evolution of a large quantum system into one-dimensional 
subdynamics. Using a less restrictive irreducibility criterion than in 
previous work, we have introduced different barred elements in connection 
with each particular correlation. 

The previous (unbarred) operators serve to define subdynamics of a 
given degree rather than that of a given correlation. For  instance, the 
diagonal elements of the collision operator r are identical with r while 
off-diagonal ones of r are now included in creation or destruction elements 
cd, ~ relating different states of the same degree of correlation. 

In the case of the complete decomposition, the generators of the 
evolution O are identical with the diagonal elements of the evolution 

822/48/5-6-26 
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generator 0 of the collected subdynamics. In particular, for the vacuum 
subdynamics 

00 : 00, 0 

As a consequence of the well-known dissipative properties of these 
elements, all privileged components of the states in the various sub- 
dynamics decay to zero in the course of time. 

This fact, however, does not preclude the existence of collisional 
invariants, although these only come into view after globalization into the 
/7-subdynamics. 

This can be most easily seen in the case of potential scattering (Sec- 
tion 6), where the collisional invariants are functions of the unperturbed 
energy ~o k due to (6.18)-(6.20). 

As usual, the operators entering in the theory are highly singular, and 
the transformation that diagonali~es the 0 operator, i.e., carries out the 
decomposition of /7 into the {/7} subdynamics, indeed contains dis- 
tributions. Furthermore, as can be seen, for instance, for the elements 
involved in (4.4), one cannot limit oneself to a finite number of terms in an 
expansion in the volume or in the coupling constant, but one must deal 
with the entire series. 

These remarks are of prime importance for the justification of our 
procedure in the general case, the consequences of which are still under 
intensive investigation. 

When one compares the results we have obtained with previous ones, 
one cannot help noticing the fact that the collision operator has, in general, 
a continuous spectrum. Starting with an unperturbed Liouvillian with a 
discrete spectrum, we first get a discrete spectrum for 0. But in the thermo- 
dynamic limit, in which Lo becomes continuous, we obtain a continuous 
collision operator 0. This contrasts with the viewpoint of Ref. 4, which 
insists on a continuous spectrum Liouvillian ab initio coupled with the 
much less exacting assumption that the collision operator has a discrete 
spectrum. 

The new situation created by the constructive method we have 
proposed ought to revive interest in the complete subdynamics decom- 
position of the evolution, with the prospect of a better understanding of the 
advent of dissipativity at the limit of a continuous spectrum. 

As far as the choice of a unique star-unitary transformation is concer- 
ned, which leads to the physical transformation, we gave an example for 
the case of potential scattering. In this problem, the Z operator, which is 
made up of the vacuum-vacuum elements of the star-unitary operator, 
reduces quite naturally to the identity. It is thus obvious that the role of 
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this X operator cannot be the diagonalization of the collision operator. In 
the building up of the general formalism, successive criteria have been 
proposed to fix uniquely the )~ operator, among which is the 
diagonalization of the energy superoperator. (11) This criterion is nicely 
fulfilled for potential scattering. It has been used in several other 
problems, (12) but its general validity remains an open question. 
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